Do protein crystals nucleate within dense liquid clusters?

نویسندگان

  • Dominique Maes
  • Maria A. Vorontsova
  • Marco A. C. Potenza
  • Tiziano Sanvito
  • Mike Sleutel
  • Marzio Giglio
  • Peter G. Vekilov
چکیده

Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10(-3) of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of cluster formation and metastable liquid—liquid phase separation in protein crystallization

We discuss the phase behavior and in particular crystallization of a model globular protein (beta-lactoglobulin) in solution in the presence of multivalent electrolytes. It has been shown previously that negatively charged globular proteins at neutral pH in the presence of multivalent counterions undergo a ‘‘re-entrant condensation (RC)’’ phase behavior (Zhang et al., Phys. Rev. Lett., 2008, 10...

متن کامل

The two-step mechanism of nucleation of crystals in solution.

The formation of crystalline nanoparticles starts with nucleation and control of nucleation is crucial for the control of the number, size, perfection, polymorph modification and other characteristics of particles. Recently, there have been significant advances in the understanding of the mechanism of nucleation of crystals in solution. The most significant of these is the two-step mechanism of...

متن کامل

Nucleation of Crystals in Solution

Figure 1. Schematic illustration of the two-step mechanism of nucleation of crystals. A dense liquid cluster forms. A crystal nucleus may form inside the cluster. Top: Macroscopic viewpoint of events. Bottom: The free-energy ΔG along two possible versions of the two step nucleation mechanism. 0 L L G − Δ is the standard free energy of formation of dense liquid phase and 0 C G Δ —that of formati...

متن کامل

Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM

Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, meta...

متن کامل

Rheological Properties of Bent-Core Liquid Crystals

We show that bent-core liquid crystalline materials exhibit non-Newtonian flow in their optically isotropic liquid phase. We conjecture that this behavior is due to the existence of nanostructured, fluctuating clusters composed of a few smectic-like layers. Shear alignment of these clusters explains the shear thinning observed in bent-core liquid crystals having either a nematic phase or nonmod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2015